Evaluation of automated UVC disinfection systems in acute care hospitals

Yves Longtin MD
Adriana Larrotta, MLT
Leighanne Parkes, MD
Adila Zahir, RN, DESS, MScN

Jewish General Hospital,
Feb 3rd, 2023
Background

• Terminal cleaning and disinfection at patient discharge is currently performed manually
 • Time consuming
 • Laborious
 • User-dependent

• Need to identify new technologies that could be:
 • More effective
 • Less costly
 • Less user-dependent
 • Faster
Objectives

1. To evaluate the efficacy of UVC disinfection systems to eliminate pathogens from environmental surfaces

2. To compare the UVC systems with other available technologies
Methods

• Type of study

 • Prospective observational controlled studies

 • 2 complementary types of artificial contamination of surfaces

 1) *In situ* contamination of high-touch surfaces

 2) Stainless steel cubes contamination
Methods

- **In Situ contamination**
 - Direct contamination of surfaces in an empty patient room (ER, ICU & 8NW)
 - S. aureus ATCC 25924
 - 100 microliters of 1/10000 dilution of a stock solution of Staph aureus is used to artificially contaminate high touch (HT) areas
 - Contamination leaves no visual trace
 - Essential to assess effectiveness of manual cleaning
 - Contamination of a control adjacent to the test area
 - Following contamination, disinfection of the room with various methods
 - Manual cleaning by EVS employee, Electrostatic pulveriser, vaporized H2O2 and UVC light
 - Bacterial growth assessed by contact plates (Rodac)
 - TSA with lecithin and tween 80
 - The agar plate is pressed against the previously contaminated high touch area
 - Incubation 18-20 hours at 37°C
High touch areas

N.B. Inoculated HT may differ from one room to another
Room 8825 Regular Cleaning

Room 8818 Hydrogen peroxide device
Room 8824 Electrostatic sprayer
UV system
8 lamps

ROOM 817
JANUARY 25, 2023

Window ledge

Chair

Washroom door

Night Table

Bed rail

Side table
Results

• **Part 1: In situ contamination**
 • To compare UV light with other known modalities (Normal cleaning, Electrostatic sprayer, Hydrogen peroxide device)
 • 3 runs of UV tower and 3 runs of movable 8 UV lamps device

• **Part 2: study factors that influence UV light effect**
 • 9 “test runs”
 • 6 with 8 UV lamp device
 • 3 with 4 UV lamp tower

 • Evaluation of duration of exposures
 • Between 4 minutes and 12 minutes

 • Evaluation of height of UV light source
 • Between 1’3” and 6’4” from ground (tower – 4 UV lamps)

• Locations
 • ER room (n=6)
 • ICU room (n=2)
 • ER patient bathroom (n=1)
Methods

• Stainless steel cubes contamination

 • Goals
 • For UVC system only
 • To palliate the ceiling effect associated with in situ contamination with RODAC plates
 • To control for orientation of the surface

 • Methods
 • A single surface contaminated with approx 10^7 CFU S aureus
 • Placement of contaminated stainless steel cubes in strategic locations in the room
 • Effectiveness of disinfection assessed by calculating the residual bacterial load on the test cube compared with an unexposed control
 • Sampling of cubes: by immersion in sterile bag and serial dilution on blood agar plates
Cube contamination used for UV light evaluation

• Impact of location of surface
• Impact of orientation of surface
• Impact of duration of exposure
• Impact of height of UVC source
Contaminated cubes in place
Analyses

• Effectiveness of disinfection method (Serial dilution technique)

 • Calculated as the difference between the residual bacterial load on the test surface and the bacterial load on the control (unexposed surface) expressed on a logarithmic scale

 • \log_{10} reduction = \log_{10} CFU control surface – \log_{10} CFU test surface post disinfection
CFU assessed by 1:10 serial dilutions
Ceiling: 14/25
0.08
0.017
<0.001
0.026

Ceiling: 4/28

Ceiling: 5/19

N=3 rooms
19 surfaces
1 8 uv lamp unit in 3 successive locations in room
4 minutes total exposure

N=5 rooms
25 surfaces
3 uv light units simultaneously
7min32sec

N=5 rooms
28 surfaces

N=4 rooms
20 surfaces

Electrostatic sprayer

N=5 rooms
18 surfaces

Ceiling: 20/20

Ceiling: 6/18

N=3 rooms
18 surfaces
Hands-on time and Turnaround time
8 lamps UV system
Rooms: 24 and 33
Exposure time: 3 times 1min 34 (total: 4 minutes)
8 lamp UV light system
ER room
Exposure time: 3 x 4 minutes (total 12 minutes)
8 UV lamp system
Patient Bathroom
Exposure time: 1min 43 sec

Patient bathroom, 1min 43 sec exposure

- SS plate sink WC
- SS plate toilet handle
- Global
UV system (single unit)
Exposure time: 7 min 32 sec
Varying height of UV source

Impact of height of UV source

- Stretcher Hand rail (T)
- Stretcher Hand rail (F)
- Side Table
- Monitor Handle (F)
- Monitor Handle (T)
- Global

1'3" from ground vs. 6'4" from ground
Conclusions

• UVC system
 • Compared to manual disinfection and electrostatic pulverisers
 • More effective
 • Faster
 • Less variability

• Compared with H2O2
 • Less effective
 • Faster
UVC systems

- Effectiveness influenced by
 - Location of surface
 - Orientation of surface
 - Exposure time

- 8 lamp UV system
 - Location is at-odds with location of contamination in room

- Small 4 light tower system
 - Capacity to place it higher and to use multiple sources simultaneously could make it more interesting to healthcare system